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Secondary structural investigations into homo-oligomers of
d-2,4-cis oxetane amino acids
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Abstract—Investigations into the secondary structural preferences of homo-oligomers of a new class of sugar amino acids, d-2,4-cis-oxe-
tane amino acids, are reported. The oligomers were seen to adopt a well-defined repeating b-turn structure in solution.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The ability of sugar amino acids (SAA’s) to act as pepti-
domimetics was first demonstrated by Paulsen1 and subse-
quently there has been much interest in the synthesis of
SAA’s and investigation into their structural preferences.2

The mechanisms of protein folding are not fully under-
stood and the folding of a protein cannot be predicted from
its amino acid sequence. The assembly of a molecule, there-
fore, which has a propensity to adopt a well-defined sec-
ondary structure, is not readily predictable.

Homo-oligomers of conformationally restricted3,4 SAA’s
have been extensively studied and provide many examples
of ‘foldamers’, molecules which display a predisposition
towards the formation of well-defined compact secondary
structures in relatively small molecules.5,6 The structural
preferences of homo-oligomers of b-cis-oxetane amino
acids and d-2,4-trans-oxetane amino acids have previously
been investigated (Fig. 1). The DD-arabinoate and 6-deoxy-
LL-altronate b-cis-oxetane amino acids 1 and 2 were seen
to adopt helical structures in solution stabilised by 10-
membered hydrogen-bonds. 7 In contrast, however, the
majority of the d-2,4-trans-oxetane amino acids did not
show a predisposition to adopt a well-defined secondary
structure in solution. There were two exceptions to this:
the LL-rhamnoate 3 and DD-lyxonate 4, both of which
exhibited an ordered structure which was not stabilised
by hydrogen-bonds but was seen to be a result of steric
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interactions enforced by the bulky tert-butyldimethylsilyl
protecting groups.8 Herein, we report investigations into
the secondary structural preferences of homo-oligomers
derived from d-2,4-cis-oxetane amino acids 15 (Fig. 2),
the synthesis of which was described in a preceding
paper.9

The secondary structural preferences of many tetrahydro-
furan (THF) SAA’s have been investigated and helical
and turn type structures have been observed in their
homo-oligomers.10 For example, homo-oligomers of a ser-
ies of 2,5-cis and 2,5-trans THF SAA’s 8–14 (Fig. 2) were
studied and it was seen that the inversion of a single posi-
tion of the carbohydrate ring had a profound effect on the
secondary structural preferences of the oligomers.11 The
2,5-cis relationship was seen to be essential for b-turn for-
mation and both changes in protecting groups 10 and 11
and deoxygenation of C-3 13 had little effect on the second-
ary structure.12,13 However, both changes to the relative
configuration of C-3 and C-4 with respect to C-2 and C-5
and also on moving to 2,5-trans systems had a marked ef-
fect on the observed structure. Taking the flexible 2,5-trans
amino acid scaffold 8 and altering the relative configuration
of C-3 and C-4 to rigidify the backbone by the use of an
acetonide protecting group gave 9, the octamer of which
adopted a left-handed helical structure in solution.14,15 In
addition, in the 2,5-cis oligomers from 12 with all the sub-
stituents, on the same face, no H-bonding was observed. It
could, therefore, be postulated that homo-oligomers of the
2,4-cis oxetane amino acid 15, due to their structural simi-
larities with the 2,5-cis THF SAA’s, might be expected to
adopt a repeating b-turn structure.
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Figure 1. Structures adopted by homo-oligomers of oxetane amino acids previously studied.
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Figure 2. Structures adopted by some tetrahydrofuran d-SAA oligomers.
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2. Materials and methods

The characterisation of the solution conformations of tet-
ramer 17 and hexamer 18 has been performed with 1H
NMR and IR spectroscopy. NMR experiments were per-
formed at 500 MHz in both CDCl3 and C6D6 in an attempt
to remove ambiguities arising from coincidental resonance
overlap, with chloroform generally providing the more
favourable dispersion. A variety of 2D experiments were
employed to establish resonance assignments and to probe
the solution conformations via NOEs. TOCSY and HSQC
spectra established proton assignments within each sugar
residue and ROESY experiments (performed as the Tr-
ROESY technique16 to suppress TOCSY interference,
sm = 200 ms) provided sequential proton assignments for
each oligomer and established longer-range spatial
proximities.
3. Results and discussion

The partial 1H NMR spectrum of dimer 16, tetramer 17
and hexamer 18 (Fig. 3) serves to illustrate the significant
resonance dispersion found for these homo-oligomers, a
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Figure 3. Partial 1H spectra for (a) dimer 16 (400 MHz); (b) tetramer 17

(500 MHz); and (c) hexamer 18 (500 MHz).
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Figure 4. Solvent titration plot for hexamer 18 (DMSO-d6 additions to an
initial CDCl3 solution).
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feature suggestive of conformational preferences in the tet-
rameric and hexameric species. A particularly striking fea-
ture is the amide proton resonance dispersion, which
clearly illustrates two distinct amide proton environments
corresponding to the resonance shifts of ca. 7 ppm (similar
to that of the dimer) and of >8 ppm. The low-frequency
resonance is typically associated with amide protons that
are solvent exposed whilst those to higher frequency are
those involved in hydrogen-bonding interactions.17 This
behaviour has been confirmed for the hexamer in a DMSO
titration experiment (Fig. 4) in which those protons that
show greatest sensitivity to the DMSO additions are taken
to be solvent exposed and not involved in internal hydro-
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Figure 5. The characteristic NOEs observed in tetramer 17 and hexamer 18.
gen-bonds. Thus, in both the tetramer and hexamer, only
NHB appears unable to take part in such H-bonding asso-
ciations in the most highly populated conformations. Dilu-
tion studies have shown the spectra to be invariant to
solution concentrations, suggesting that the H-bonds pres-
ent in these systems arise from intra-molecular interactions.

Both the shift dispersion and titration data bear a remark-
able similarity with those reported for the closely related
[THF] oligomers;11,12 these data alone offer a strong
indication that the solution conformations of these
oxetanes will be similar to those identified for the THF sys-
tems. Thus, the THF oligomers have been described as
having a repeating b-turn like structure in which the amide
proton of residue i hydrogen-bonds with the carbonyl
group of residue i-2, thus forming a 10-membered H-
bonded ring. The NOEs observed for the oxetane oligo-
mers 17 and 18 (tetramer and hexamer) are again consis-
tent with such a turn formation (Fig. 5) and again
demonstrate the characteristically very strong NOE from
the NH to only one of the geminal H5 protons of the pre-
vious residue (prochirality unassigned).

In a secondary structure in which this turn repeats along
the sequence, all amide NH protons will have an earlier
carbonyl group, with which they can H-bond, except that
of NHB, which is consistent with the above results.
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Figure 6. Partial IR spectra (CHCl3) showing the amide N–H stretch region for (a) dimer 16; (b) tetramer 17; and (c) hexamer 18.
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Similarly, in the dimer the single amide proton lacks an H-
bonding carbonyl required for this turn formation, and dis-
plays an amide shift similar to that of NHB in both tetra-
mer and hexamer. H-bond involvement for all but one
amide proton is also suggested by the solution IR data,
in which the broader, lower-frequency band of an H-
bonded amide increases proportionally with the length of
the oligomers, relative to the sharper, higher-frequency
band of the non-H-bonded amide (Fig. 6), again as ob-
served in the related THF systems.11,12

The body of data collected for the oxetane systems is there-
fore consistent with the preferred conformation arising
from an internal 10-membered H-bonded motif reminis-
cent of a conventional a-amino acid peptide b-turn. The
data further suggest that the secondary structure contains
a repeat of this turn along the sequence (Fig. 7), as reported
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Figure 7. The repeating b-turn structure proposed, shown for tetramer 17.
for the related THF systems and similar to that observed
crystallographically for oligomeric peptides containing
alternating LL-proline and a-amino-isobutyric acid
units.18,19 In such a conformation, the large benzyl protect-
ing groups sit on the opposite faces to the hydrogen-bonds
and on the outer face of the central ‘core’ of the molecules
so that they do not disrupt turn formation (such disruption
has been previously observed in an acetonide protected
[THF] system20). Additional twisting or bending of this
structure is suggested by weak NOEs between NHD and
the H-2 and H-3 protons of ring A in both the tetramer
and hexamer. It seems likely that these relate to the uncon-
strained A ring folding back under the molecule, a feature
that is perhaps related to the presence of the large benzyl
protecting groups on the oxetane rings. Alternatively, these
weak NOEs may arise from a minor conformation in which
the molecule turns back on itself and places rings A and D
in proximity. In either case, such a conformational flexibil-
ity is unsurprising in these short oligomers.
4. Conclusion

In conclusion, we have demonstrated that, in contrast to
the non-H-bonded d-2,4-trans-oxetane amino acid oligo-
mers, the d-2,4-cis-oxetane amino acid oligomers adopt
well-defined secondary structures in solution in which the
major conformation is dictated by internal 10-membered
hydrogen-bonded rings. This b-turn motif is repeated along
both the tetramer and hexamer. Such conformations are
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similar to those reported for the d-2,5-cis-THF homo-oligo-
mers and it appears that a reduction of the sugar ring size
by one carbon unit from a 5- to 4-membered ring does
not significantly alter the secondary structures observed in
solution.
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